Temple College Master Plan

TABLE OF CONTENTS

1. INTRODUCTION
2. EXECUTIVE SUMMARY
3. GOALS AND OBJECTIVES
 a. Master Planning Goals
 a1 Proposed Solutions
 b. Physical Planning Objectives
 c. Planning Process
4. ANALYSIS AND SYNTHESIS
 a. Existing Conditions
 b. Facilities Assessment Executive Summary
 c. Campus Successes
5. MASTER PLAN
 a. Short Term Plan
 b. Mid Term Plan
 c. Long Term Plan
 d. Visualizations
6. TMED APPENDIX
Temple Junior College, now known as Temple College, was organized by the Temple Chamber of Commerce with the assistance of the University of Texas and the Board of Trustees of the Temple Public Schools. It opened in the fall of 1926 with an enrollment of eighty seven, and is one of the two oldest Community Colleges in Texas. Temple College now serves the educational needs of the Central Texas Area including Bell, Milam and Williamson, and portions of the surrounding counties.

Temple College began its existence from the borrowed facilities from the Temple Public Schools. In 1955 the Temple Junior College District was established, making possible a Bond Election of $300,000 for the construction of a building built on 32 acres of land given to the College by the Federal Government. Members of the alumni association of the college visited every registered voter in the district and the proposal carried by a vote of six to one. In 1957 the college moved from Temple High School to a separate campus with its own building and faculty. Racial segregation at the college ended the same year.

Increased state aid and separation from the public schools prompted unprecedented growth after 1959. Enrollment increased from 488 in 1959 to 2500 in 1984, and the curriculum was expanded in all areas. In the past year, enrollment has exceeded 4000.

Temple College began its vocational Nursing Program in the fall of 1973. In 1982, the Nursing Education building on the East campus became its present home. Twelve buildings were built or remodeled by 1984 and the campus grew to 103 acres. In the fall of 1988, Temple College "adopted" the existing Scott and White EMS education, and in 2004, as a commitment to the conversion of interests the Temple College health Sciences building was constructed. Temple College maintains close ties with Scott & White through clinical and field internships, as well as active involvement with their advisory committee. Many of the EMTs and paramedics working today in the Central Texas community are graduates of this program.

In 2001 Temple College acquired a property with buildings at the North end of the block from the West Campus, which is now the Visual Arts campus.

To this day, Temple College continues to fill and expand its original mission to meet the educational needs of the surrounding communities, providing day and night classes, distance learning classes, vocational and college credit courses and continuing education programs.
In January of 2010 Temple College retained SHW Group to develop a Master Plan for the existing South and East Campus, planning for the incorporation of the newly acquired land to the North of the South Campus, and providing seamless integration of the Art campus within the South campus' identity. At its most base level the goal for the 2010 Temple College Master Plan is to accommodate student population growth that exceeded projections, provide additional instructional facilities and improve pedestrian circulation. These planning guidelines will be solved with the following ideals in mind:

- Provide a warm, welcoming pedestrian-friendly campus
- Provide a strong campus identity along South First and South Fifth Street
- Plan for transitioning internal parking lots to green space
- Plan for expanded & new parking to the South and North of the South Campus as well as on the East Campus
- Locating new Instructional Facilities on the South Campus and Health Science Facilities on the East Campus
- Appropriate integration with the TMED planning district goals

The Master Plan addresses vehicular and pedestrian circulation on the campus. It provides additional parking to address the parking challenges existing on the current campus. The plan also redistributes vehicular and pedestrian movement to, around and through the campus allowing for simplified circulation and improved safety through clearly directed routes, improved lines of sight, improved wayfinding and consolidated parking locations. The plan addresses the framework for improvements as they relate to schedule and budget.

The Campus Master Plan is a living document. While it provides a present day framework for addressing growth, academic change and aging facilities, the master plan must also evolve over time to meet new unanticipated challenges for many years to come. In order to evolve successfully the plan must be revisited regularly and with an empathetic set of eyes and ears, used to guide future development, and reassessed and revised if new challenges to Temple College warrant it.

The Master Planning Committee and other contributors to the effort, through the effort extended during our planning process:

- Identified existing and potential future physical and programmatic challenges
- Created guidelines and requirements to provide a framework for the proposed solutions
- Proposed and tested solutions to each challenge, with the results presented within this document
Executive Summary

PHYISCAL AND PROGRAMMATIC CHALLENGES

The main challenges identified and discussed throughout this process include:

- Facilities Condition – Outdated infrastructure, equipment, classrooms and labs. Projects developed from the master plan are prime opportunities to address these issues during other renovation work.

- Improved Accessibility – Inaccessible spaces (campus circulation, vehicular and pedestrian queuing, building entries, doorways and landscaping)

- Landscaping/Site – Lack of inviting outdoor areas; need for maintaining and improving views and vistas; need to address pedestrian and vehicular circulation issues; improve way finding

- Growth – Develop placeholders for future building sites and parking

GUIDELINES AND REQUIREMENTS

To consider the master plan successful, any solutions developed should:

- Support and Cultivate Student Success

- Be a catalyst for academic and economic change in the TMED service area

- Extend learning outside of the classroom

- Encourage people to walk the campus, throughout each day and year to year

- Improve access to the College and its services

- Create a practical, sustainable plan for growth

- Organize and improve existing facilities

- Respect and enhance the campus environment, improving the architecture, open space and character of the College with an eye toward reduced maintenance
Goals & Objectives

MASTER PLANNING GOALS

1. **Present a clear plan for orderly growth on both new and existing campus property.** The acquisition of this land (and the potential future acquisition of adjoining property) has presented Temple College with an opportunity to reorganize the campus, expand opportunities, improve drainage, entry and access and create a strong identity. The master plan must integrate the new land with the existing campus and provide a framework to best support the needs of a growing, 21st century college.

2. **Create Cost Effective Solutions.** In addition to being attractive and supportive of the college goals, proposed design solutions should be cost effective to implement, construct, operate and maintain.

3. **Be capable of being phased.** Proposed projects should be able to be developed in phases to accommodate available funding and minimize disruption to campus operations.

4. **Integrate with other entities.** Temple College and its neighbors, including the City of Temple and all the partners in the Temple Health and Bioscience District, are entering a pivotal time in the growth and development of the Temple region. To take maximum advantage of this opportunity, the master plan must coordinate with these efforts already underway.

5. **Improve pedestrian circulation, vehicular circulation and parking.** Pedestrians should have priority over vehicles, therefore walkways should be attractive, clearly defined and have as few points of conflict with cars as possible. Visitors should know when they’ve arrived at Temple College, have no question how to get onto campus, be clearly directed to their destination and be able to find convenient parking. Students and staff should be able to efficiently navigate to appropriate parking with minimal vehicle intersections and pedestrian crossings. Parking, roadways and walkways should be attractive and located to encourage walking between buildings rather than driving – including the removal of roads that divide campus.

6. **Create a unified, identifiable Temple College presence.** How Temple College is perceived in the community and in the higher education market should be supported by a cohesive identity. This campus image, including building placement, building design, signage, and landscaping should coordinate with programs and clearly communicate the goals and mission of Temple College.

SUMMARY

The following analysis and synthesis of information is driven by the principles, values and goals set by Temple College. When coupled with faculty and staff surveys, site and facility assessments and participant workshops, the groundwork is laid for development of the final Master Plan.
Goals & Objectives

Proposed projects for the duration of the master plan are phased to be affordable, manageable and to occur in an orderly manner. These projects, explained in detail in the Implementation Plan section include:

SITE PROJECTS

Site projects, both ones that can be completed independent of building projects and those that are best handled in concert with other construction, include:

• Creating a landscaped “edge” along the Fifth Street corridor to support this entry into campus and allow a more pedestrian friendly front door to the West.

• Integrate the campus with the TMED plan without suppressing the natural growth of Temple College.

• Campus entry redesign and redevelopment, including reduction in the number of entries, signage improvements, addition of drive-up campus maps and landscape work to improve the campus image and simplify access to the College.

• Roadway and parking lot improvements throughout campus include general resurfacing of parking lots, separation of campus roads from the parking lots and creation of an east campus access road.

• Pedestrian pathways will be improved to separate vehicle and pedestrian traffic, create a stronger connection between campus buildings and provide opportunities for development of shaded walkways and outdoor gathering spaces.

• Create a pedestrian “spine” through the core of campus promoting a welcoming and simple pedestrian path through the West campus connecting all facilities, parking lots, courts and landscaping improvements.

• Development of all these items should include implementation of a comprehensive landscape/planting plan which will focus on “broad brush strokes” of plantings, opportunities for fundraising and reduced maintenance.

BUILDING PROJECTS

Proposed new construction and renovation projects across campus include the following. Detailed information is available in the body of the master plan.

Instructional Facility #1

• Adjacent the main entry into campus

• To be built with proposed the New Main Campus Round about

• Will allow the ISC to be reallocated for Art Studios or other use.

Instructional Facility #2 & #3

• These facilities will begin to define the academic core between the Arnold Student Union, ISC & the Hubert L Dawson Library

• They begin the redefining of academic quads on campus

• Providing for student growth that exceeds projections as well as improved technology accommodation for Temple College.
Goals & Objectives

Specific objectives have been established to help Temple College realize its master planning goals. These objectives fall into three main categories:

Parking & Vehicular Circulation, Facilities & Infrastructure, and Site & Circulation

PARKING AND VEHICULAR CIRCULATION

Recently acquired land to the north of the Main South Campus has provided Temple College the opportunity for reevaluation not only future parking lot locations but also to consider the nature of vehicular circulation on campus. The campus planning reviewed many opportunities provided by this acquisition ultimately proposing a campus free, for all intents and purposes, of internal vehicular traffic. As the campus population grows, the nature of the campus will as well. This shift in campus parking from its current plan of providing parking throughout campus to the proposed plan of centralized parking on the southern and northern boundaries will create a change in the campus’ identity for the betterment of all. It is only through dramatic immediate change that this effect can take place. It is our hope that the proposed plan, to remove parking from the core of the Campus, will be acted on urgently as the result will surely be profound.

As a rule of thumb, whenever possible, projects should include improvements to adjacent open spaces and circulation zones impacted by the project.

SITE AND CIRCULATION

All institutions with common goals function more successfully when those endeavoring to further their cause, along with those of the institution, are provided comfortable, simple pedestrian circulation throughout campus. The proposed master plan looked carefully at the impact reorganized parking would have on the campus circulation and its identity. This new “campus feel” should be enhanced by any changes to the campus. Efforts should be undertaken to create safe, comfortable, human-scaled spaces for learning, relaxation and interaction, with an emphasis on creating a sense of connection between the many building forecourts and open spaces weaved throughout the site. Outdoor spaces should be designed in a way to improve campus way finding, reduce the often overwhelming openness of some areas and create opportunities for students to gather in welcoming, shaded areas. Site improvements should strive to use native trees and appropriate native plantings as a technique to reduce runoff and maintenance requirements.

Existing quality wooded areas and specimen quality plants should be preserved wherever possible. Transition zones from streets to parking lots and from parking lots to pedestrian walks should be enhanced to create a sense of entry to the campus. Numerous entry points to campus should be reduced to simplify entrance to the site. These entrances to the campus should be better defined by signage and landscaping to assist visitors and create a stronger first impression.

An effort should be undertaken to create a simple, comprehensive signage plan to tie together all campus signage in order to improve way finding and enhance the common architecture of the existing buildings.

FACILITIES AND INFRASTRUCTURE

Two facilities improvement and development projects are desired for implementation on the TC campus. ISC was evaluated and determined to be of value due to the simplicity of infrastructure improvement and the buildings structural assembly allowing interior modifications to be made to accommodate alternate programmatic functions. A facilities assessment is included in this report.
Before embarking on the Master Plan document, a brief overview of the master planning process is in order. The Master Plan process is comprised of five overlapping phases: strategic review, functional analysis, physical analysis, solutions development, and final documentation.

The first phase, strategic review, includes review of any existing master plans and other information, including the mission statement and strategic goals of the College. This step also acts as an introduction to the planning process, allowing the Master Planning Team to become acquainted with the issues to be addressed throughout the creation of the plan and to form a common vision for individual expectations, the schedule and the process.

The next two phases, functional and physical analysis, include the collection of data required to develop solutions for the Master Plan. The functional analysis includes development and issuance of surveys to individual departments within the college, interactive workshops, and interviews with key members of the College. The physical analysis includes the collection of existing documentation, confirmation of physical conditions and an overall review of the existing facilities adequacy in supporting the Master Plan.

The above phases create the framework for solution development. Solution development includes developing planning options based on the functional and physical analysis and the development of schedule and phasing options. The options are presented at a series of interactive workshops for analysis and feedback from College representatives. These options are then refined and finalized into a plan for future facility development, culminating in the creation of the final master plan report.

Most importantly, the Master Plan is a living document. It is not a final plan for the college, but the present vision for the potential growth of Temple College. This document should not be considered “set in stone”, but should be reviewed and updated with faculty and staff input, and as dictated by changes in education, information, and College and community goals.
Analysis & Synthesis

INTRODUCTION

In preparation for the preliminary planning and development of the Master Plan for the College, the existing conditions of the campus and facilities were studied to identify both the opportunities and constraints that will affect future development. This, along with an understanding of program offerings, enrollment and staffing, will allow challenges to be analyzed and addressed, enhancing and preserving areas of value.
Analysis & Synthesis

EXISTING CONDITIONS

Built Environment - TMED Zones
Analysis & Synthesis

EXISTING CONDITIONS

Natural Environment
Analysis & Synthesis

EXISTING CONDITIONS

Vehicular Circulation
Analysis & Synthesis

EXISTING CONDITIONS

Pedestrian Circulation

- Walking Distances (30 Second Intervals)
- Walking Distances (2 Minute Intervals)
- Pedestrian/Traffic Intersections
Analysis & Synthesis

EXISTING CONDITIONS

Icons and Opportunities
Analysis & Synthesis

EXISTING CONDITIONS

Programs & Curriculum
Analysis & Synthesis

EXISTING CONDITIONS

All Existing Conditions
Berry Hall
While this building is in fair shape structurally, it would be difficult, if not impossible economically, to renovate and convert to a modern college level classroom building. Structure heights limit ceiling heights to those less than desirable in college environments.

Modern building code requirements, along with TAS/ADA accessibility issues, energy inefficiency, Mechanical, Electrical and Plumbing deficiencies, all point to the demolition of this building.

Space created by the demolition of this building could be used for future building construction or expansion of the south parking lot.

Instructional Service Center (#1 and West Addition)

ISC West
As outlined in the assessment in the following pages, this portion of the ISC complex has recently been renovated. The functionality of this building seems very appropriate for the current curriculum, and with some exceptions can be left as is. The following are items which would need to be addressed:

- The lounge on the second floor requires an elevator
- The Campus Police Department needs to have accessible entrance and exit.
- Install a new roof
- Cosmetic upgrades to the exterior of the building addressing some of the deficiencies noted in the assessment.
- Interior accessible route from ISC1 to this building.

Facilities Assessment - Executive Summary

ISC1
While renovating this building and bringing it into Building Code Compliance will be costly, we believe this should be considered if the building is re-purposed for uses other than current curriculum. Such consideration is based on the following:

- Building is structurally sound, load bearing masonry and steel construction. The exterior and corridor walls are the bearing elements, however; interior demising walls between classrooms are non-load bearing. These non load bearing partitions can be removed, facilitating the enlargement of classroom spaces and creation of larger, accessible restroom spaces and accessible office spaces.
- Building is constructed over crawl space, allowing the installation of new plumbing and distribution of electrical below the floor.
- See ISC1 diagram on page 24

A valid renovation program would include the following:

- Installation of modern, energy efficient mechanical, electrical and plumbing systems.
- Installation of new fire protection and fire alarm systems.
- Installation of new energy efficient entrance doors and windows.
- Installation of new technology and communication systems.
- Installation of a new roofing system.
- Enhancement of exterior and interior architectural elements.

In addition to the items above, a portion of ISC1 should be demolished. This is the portion of the building now housing offices and the faculty lounge and physically connects ISC1 to ISC West. The demolition of this area would create the ability to connect ISC1 to ISC West, with TAS/ADA compliant ramps.
BERRY HALL
(YEAR BUILT 1961)

Building is in good shape from a structural standpoint and exterior finishes are in fair to good condition. The building however would be difficult to bring up to current building codes, accessibility codes, and energy codes without some major renovations to the existing structure. The following list of items was noted during a recent walkthrough of the building.

STRUCTURE

Foundation
Slab on Grade
• No noticeable cracking or serious movement noticed.

Walls
Brick masonry and metal panel exterior on brick and block interior cavity walls
• Some cracking of exterior brick at windows and corner of buildings noticed.
• No cracking of interior block or brick wythe noticed.
• Metal panels have exposed fasteners some rusting is occurring at bottom of panels
• Interior corridor walls assumed to be load bearing. No evidence of cracking but not always exposed to view.
• Some damage to brick noticed where canopies connect to brick.

Windows
Steel framed windows with single pane glazing
• One window at men’s restroom boarded with plywood.
• All view glazing had film applied to the glass.
• Frosted glass noticed at restrooms.

Entries
Aluminum Storefront
• Entry doors appear to be relatively updated with panic hardware and pulls.
• No center mullion between pairs of doors. No weather stripping provided.
• Most entries are not accessible due to inclines to doorways exceeding 1:20 slopes or thresholds exceeding ½ inch height.
• ADA ramps and handrails non-compliant

Roof
Flat roof originally built-up coal tar or asphalt on gypsum deck and bulb tee grid on steel framing
• Roof recently updated with PVC single ply.
• Rusting of steel framing and bulb tees noticed in some locations.
• Some discolor of gypsum deck noticed suggesting water staining, but no overall sagging or serious deterioration is occurring.
• Roof edge of sheet metal fascia with sheet metal gutters and downspouts with downspouts at overhangs penetrating roof.
• Gutters take storm water to grade.
• Overhangs of exposed gypsum deck and steel structure.

Interior walls
Wall construction for the most part is brick and block
• Plastic laminate panels added at corridors
• Burlap covering and paint added at classrooms and offices.
• No interior columns. Assumption masonry walls are load bearing. Difficult to change room arrangements.
• Rubber base exists on all walls.
Analysis & Synthesis

EXISTING CONDITIONS

Ceilings
2x4 Lay-in ceilings typical in corridors and rooms.
- Ceilings are in relatively good condition, no sagging or broken panels.
- Ceilings are typically 8 ½ ft. high in all rooms.
- Taller ceiling height (at bottom of structure) 10 ft exists at north corridor.
- 2x2 lay-in ceilings exist at restrooms.

Doors
Painted wood doors with glass lites with return air louvers in most.
- All doors have knob hardware and do not meet ADA
- Doors did not have closers except at restrooms.
- Doors were in hollow metal or in some instances wood frames.
- Door width’s were typically only 32 inches wide and are too narrow for accessibility.
- Doors are not fire rated, but should be.

Corridors
Brick and block walls with plastic laminate finish typical.
- Drinking fountain is recessed but crowded by coke machine.
- Fire extinguisher cabinets are surface mounted and protrude more than 4 inches.
- Hand sanitizer dispensers also protrude more than 4 inches into corridor.

Restrooms
Tile floor and walls with 2x2 lay-in ceiling.
- Existing fixtures do not meet ADA requirements.
- There is not enough room for access to urinals, lavatories or toilets. Room would have to be reconfigured for accessibility reasons with the possibility of losing fixtures to accommodate clearances required.
- Door is too narrow to be accessible.
- Not enough clearances exist at vestibules.
- Floor is mud set and raised from corridor floor making it not accessible from corridor vestibule.
- Surface mounted light fixtures.
- Water heater room located off of men’s restroom.

Classrooms
Brick and block walls with burlap and painted covering.
- VCT floors in fair condition.
- Few electrical outlets with some added surface mounted raceways noted.
- Classroom sizes are small.
- Low ceiling heights.
- Recessed pyramid light fixtures.

Offices
Carpet floors and painted drywall or brick walls.
- Carpet in fair condition.
- Few electrical outlets with some added surface mounted raceways noted.
- 2x4 lay-in ceiling and fixtures.
BERRY HALL (cont.)

MEP Assessment:

Main Electrical Service: Electrical service to this facility is comprised of one (1) 120/208V, 3phase, 4W, 400A MCB exterior NEMA3 switchgear (surface-mount) and two (2) 120/208V, 3phase, 4W, 100A (flush-mount) and 60A (surface-mount) small distribution panels located inside the facility. All HVAC loads are fed from the exterior NEMA3 switchgear. All lighting and computer/general purpose power loads are fed from the interior distribution panels, and there is no room for expansion. The interior switchgear should be replaced.

Wiring generally consists of copper conductors for lighting and power circuits. The lighting and power circuits for the most part are distributed overhead through conduits in the ceiling space. Given the age of the wiring, it is recommend all branch wiring feeding light fixtures and receptacle outlets throughout the building be replaced.

Emergency/Stand-By Power: No generator or back-up UPS power exists for this building.

Lighting: The interior lighting has been recently upgraded and does not need to be addressed at this time. All exit signage is new and properly installed.

Telephone/Data Service: The existing telephone system is VoIP. The voice/data cabling is distributed throughout the building via cables/wiring above ceiling from a small server room. Data cabling is installed in most spaces in surface-mount raceway. Depending on updated Owner requirements and architectural changes, the data infrastructure may need to be expanded or replaced.

HVAC: In general, the building is served by individual single-zone DX/gas heat roof top units. Given the age and general condition of the equipment, a complete replacement is recommended.

Plumbing: Existing domestic water and sanitary sewer piping should be replaced due to age and condition. Repairs are made routinely by Temple College maintenance staff. Existing plumbing fixtures are generally in good condition and some have been recently replaced. However, due to required changes to meet ADA requirements, it is recommended that these fixtures be replaced.

Analysis & Synthesis

EXISTING CONDITIONS

7.

19
Building is in good shape from a structural standpoint and exterior finishes are in fair to good condition. The building would require renovation to bring up to current building, accessibility, and energy codes without renovations to the existing structure. The following was noted during walkthrough of the building on February 25, 2010:

Exterior of building is brick with steel windows and single pane glazing (film applied) with exterior gypsum soffit and fascia boards above windows with exposed structure at overhangs. Entries are not accessible due to slopes to the building exceeding that allowed per ADA or for non compliant ramps and handrails. Thresholds also were more than the allowed ½ inch height. Roof is an old built-up roof (requiring replacement) on gypsum deck on bulb tees and steel structure.

Terrazzo floor exists at north lobby which might suggest terrazzo exists under carpet in other areas. Most floors were carpeted with rubber base and brick and block walls typical. Walls had plastic laminate finish in corridors. Interior corridor walls appear to be load bearing block walls. Wood paneled walls exist in offices.

Batt insulation was seen above ceilings which is no longer acceptable per new building energy codes. Ceiling heights vary between corridors and classrooms in this wing. Doors are stained wood doors with glass lites and return air louvers. Doors were not fire rated.

Portions of the lay-in ceiling were sagging suggesting high humidity levels occurring inside the building. Restrooms did not meet accessibility requirements and would have to be reconfigured. Drinking fountains were single height and do not meet accessible requirements. Control booth was not accessible. Theatre did not have accessible seating spaces.

ISC West has recently been renovated into a Police Academy. The spaces are very nicely done with modern finishes, adequate lighting, ample data and audio/visual graphics.

There are three second floor storage spaces indicated on the floor plan. The larger middle space is being used as a lounge for the Police Academy. Due to the size of this space, it is required to have elevator access. None exists.

The Campus Police Department is housed in the South End of the West Wing. Exterior doors to this space offer no accessible entry. Doors were locked at the time of walk-through; interior of space was not evaluated.
Analysis & Synthesis

EXISTING CONDITIONS

Instructional Service Center (cont.)

STRUCTURE

Foundation
Concrete Pier and Beam
- Several cracks at the corners of the building indicate settlement. Could not determine if the cracks were telegraphed into the interior of the building. There are numerous indications of foundation dams failing around the perimeter of the building, which would allow water and vermin free access to the crawl space.

Walls
Brick veneer on load bearing concrete masonry unit walls.
- Some cracking of exterior brick at windows and corner of buildings noticed.
- No cracking of interior block or brick wythe noticed.
- Interior corridor walls assumed to be load bearing. No evidence of cracking but not always exposed to view.
- Corridors 100C and 100D have full height laminate installed from floor to ceiling. Ceiling height in these corridors is 8’-4”.
- Near south end of west wall exists a pair of double doors that apparently was once a loading dock for storage or similar use. These doors appear to be permanently locked, and no access available. The concrete landing has been demolished, exposing reinforcing bars under the threshold of the doors.

Windows
Steel framed windows with single pane glazing
- Windows with movable sash have little or no weather-stripping. Light is visible from inside building around sash.
- All view glazing had film applied to the glass.
- Frosted glass noticed at restrooms.

Entries
Aluminum Storefront
- Entry doors appear to be relatively updated with panic hardware and pulls.
- No center mullion between pairs of doors. No weather stripping provided.
- Some entries are not accessible due to inclines to doorways exceeding 1:20 slopes or thresholds exceeding ½ inch height.
- ADA ramps and handrails non-compliant

Steel Entrance Doors
- Entry doors appear to be outdated although they are working OK.
- Pairs of doors have center mullion. No weather stripping provided.
- Some entries are not accessible due to inclines to doorways exceeding 1:20 slopes or thresholds exceeding ½ inch height.

Roof
Flat roof on original ISC building is built-up coal tar or asphalt on gypsum deck and bulb tee grid on steel framing.
- Roof reportedly is old and leaking.
- Rusting of steel framing and bulb tees noticed in some locations.
- Some discolor of gypsum deck noticed suggesting water staining, but no overall sagging or serious deterioration is occurring.
- Roof edge of sheet metal fascia with sheet metal gutters and downspouts.
- Gutter and downspouts take storm water to grade.
- Overhangs of exposed gypsum deck and steel structure.

Flat roof on West ISC building is built-up coal tar or asphalt on metal deck and insulation over steel joists.
- Roof is within a few years of age similar to the East portion of ISC, however at this time is not leaking.
Analysis & Synthesis

EXISTING CONDITIONS

Floors
VCT or Carpet in all classrooms, corridors and offices
- Carpet is in good shape, no visible seams or unraveling noticed.
- VCT in areas observed is also in good shape.

Interior walls
Wall construction in classrooms and hallways is brick and block.
- Plastic laminate panels added at corridors
- Burlap covering and paint added at classrooms and offices.
- No interior columns. Assumption masonry walls are load bearing. Difficult to change room arrangements.
- Rubber base exists on all walls.

Many walls in offices and ancillary spaces are painted tongue and groove wood paneling. This is in violation of modern school construction fire codes.

Ceilings
2x4 Lay-in ceilings typical in corridors and rooms.
- Ceilings are in relatively good condition, no sagging or broken panels.
- Ceilings are typically 10 ft. high in classrooms.
- 2x4 lay-in ceilings exist at restrooms.

Doors
Classrooms have stained wood doors with glass lites and return air louvers.
- With exception of restroom doors, doors do not have closers.
- Doors were in hollow metal or in some instances wood frames.
- Door widths in classrooms were 36” inches wide, however; restrooms were 32” wide and are too narrow for accessibility.
- Doors are not fire rated, but should be.
- Some doors to offices are painted wood.

Corridors
Brick and block walls with plastic laminate finish typical.
- Drinking fountains generally are not recessed but are accessible units.
- Fire extinguisher cabinets are surface mounted and protrude more than 4 inches.
- Hand sanitizer dispensers also protrude more than 4 inches into corridor.

Restrooms
Tile floor and walls with 2x2 lay-in ceiling.
- Existing fixtures do not meet ADA requirements.
- There is not enough room for access to urinals, lavatories or toilets. Room would have to be reconfigured for accessibility reasons with the possibility of losing fixtures to accommodate clearances required.
- Door is too narrow to be accessible.
- Floor is mud set and raised from corridor floor making it not accessible from corridor vestibule.
- Surface mounted light fixtures.

Classrooms
Typically brick and block walls.
- Carpet floors in fair condition.
-Few electrical outlets with some added surface mounted raceways noted.
- Classroom sizes are small.
- Normal ceiling height of 10’ noted most rooms.
- Recessed pyramid light fixtures.

Offices
Carpet floors with painted drywall, wood or brick walls.
- Carpet in fair condition.
- Few electrical outlets with some added surface mounted raceways noted.
- 2x4 lay-in ceiling and fixtures.
Instructional Service Center (cont.)

MEP Assessment:

Main Electrical Service:
Electrical service to the facility is located in the basement of this facility and is comprised of numerous 120/208V, 3phase, 4W distribution switchgear. All equipment is original and should be replaced to age and condition. HVAC loads are fed from roof-mounted NEMA3 switchgear. These panels are fed from the basement switchgear. All lighting and computer/general purpose power loads are fed from the basement distribution panels, and there is no room for expansion. All existing feeder conduit and conductors should be replaced due to age and condition.

Emergency/Stand-By Power:
No generator or back-up UPS power exists for this building.

Lighting:
The interior lighting has been recently upgraded and does not need to be addressed at this time. All exit signage is new and properly installed.

Telephone/Data Service:
The existing telephone system is VoIP. The voice/data cabling is distributed throughout the building via cables/wiring above ceiling from a small server room. Data cabling is installed in most spaces in surface-mount raceway. Depending on updated Owner requirements and architectural changes, the data infrastructure may need to be expanded or replaced.

Fire Alarm System:
A code-compliant addressable fire alarm system is not installed at this facility. A new fire alarm system should be installed to meet current code requirements.

HVAC:
In general, the building is served by individual single-zone DX/gas heat roof top units. Given the age and general condition of the equipment, a complete replacement is recommended.

Plumbing:
Existing domestic water and sanitary sewer piping should be replaced due to age and condition. Repairs are made routinely by Temple College maintenance staff. Existing plumbing fixtures are generally in good condition and some have been recently replaced. However, due to required changes to meet ADA requirements, it is recommended that these fixtures be replaced.
Instructional Service Center - East

DEMOLISH EXISTING PORTION OF BUILDING BETWEEN ISC EAST AND WEST, CREATE NEW COVERED OUTDOOR COMMONS AREA

EXISTING LOAD BEARING WALLS MAY BE REMOVED WITH COST IMPACT

EXISTING NON-LOAD BEARING WALLS MAY BE SAFELY REMOVED

EXISTING EXTERIOR AND INTERIOR WALLS TO REMAIN

INDICATES COLUMNS TO REMAIN

☐
Analysis & Synthesis
CAMPUS SUCCESSES
Analysis & Synthesis

EXISTING CONDITIONS

Figure-Ground
Master Plan

short term

new building
existing building
new parking
existing parking
new pedestrian paths
water feature
new trees
PHASE 1 - SHORT TERM

Parking & Vehicular
Surface Lots

Spaces Removed (150,000 sf total*):
- Administration Lot: 64
- Watson Technical Center Lot: 10
- One College Center Lot: 33
- Central Lot: 158
- Math & Biomedical Science Lot: 35
- South Lot: 5
- East Lot: 133
Total Removed: 438

Spaces Added (256,000 sf total*):
- New North Lot: 475
- Performing Arts Center/WTC Lot: 85
- New Main Entry Lot: 16
- New One College Center Lot: 31
- New Math & Biomedical Science Lot: 8
- South Lot: 144
- East Lot: 241
Total Added: 1000

Net Change: 562 spaces added

*Square Footage totals include aisles and associated entries

Vehicular Drives

Removed:
- Marvin R. Felder Dr. Connection between 1st and 5th Streets (21,800 sf)
- Entry from 1st Street remains

Modified:
- Parking access road between One College Center and Dawson Library (11,000 sf)
- Widen access road
- Add landscaped medians

Added:
- Primary campus entry drive (19,500 sf)
- Landscaped boulevard entry from 1st Street
- Drop-off circle adjacent to Performing Arts Center
- Central area with art/signage

Buildings

New Construction
- Instructional Building, 2 stories (24,000 sf):
 - 12 Classrooms
 - 12 Offices
 - 2 General Work Areas
 - 2 Conference Rooms
 - Lobby
 - Restrooms & Support Space
 - Canopy at Performing Arts Center (6,170 sf)

Landscape

Pathways & Hardscape
- Pedestrian Walk at 5th Street (2,600 lf)
 - Sidewalk with textured concrete edges
 - Light poles to match TMED District Standards (approx 50)
 - Masonry wall with seating and Temple College signage
- Central Campus Pathway (2,180 lf)
 - Drainage incorporated along path
- Revised Culvert (575 lf)
- Entry Plaza at Performing Arts Center (10,500 sf)
 - Bench seating
 - Drainage incorporated
- Perimeter Pathway at Administration Quad (850 lf)

Trees & Plants
- Trees at 5th Street Pedestrian Walk (approx 15)
- Trees and Landscaping along Central Pathway (2,180 lf, approx 200 trees)
- Trees and Landscaping at New Medians (465 lf)
 - Primary entry drive
 - Parking access road
- Trees and Landscaping at Parking (3,700 lf)
 - New North Lot and Revised South Lot
 - Areas for existing trees
 - New trees along parking rows
 - Planter median with native grasses
- Plants at One College Center Quad (16,000 sf)
- Tiered landscape levels
- Plants and Trees at Administration Quad (48,000 sf)
PHASE 2 - MID TERM

Parking & Vehicular
Surface Lots

- Spaces Added (72,500 sf total*):
 - New North Lot: 208
*Square Footage totals include aisles and associated entries

Buildings

New Construction
- Building 2, south of One College Center (44,000 sf, with option for phasing)
 - Building 2a, 2 Stories (23,300 sf)
 - Building 2b, 2 Stories (20,700 sf)

Landscape

Trees & Plants
- Trees and Landscaping at Parking (720 lf)
 - New North Lot
 - Areas for existing trees
 - New trees along parking rows
 - Planter median with native grasses
Master Plan

- new building
- existing building
- new parking
- existing parking
- golf course
PHASE 3 - LONG TERM

Parking & Vehicular
Surface Lots

Spaces Removed (145,000 sf total*):
• North Lot: 415
• Total Removed: 415

Parking Garages

Spaces Added (352,800 sf total*):
• New North Parking Garages (2): 475+ each
• Total Added: 950
• Net Change: 535 spaces added
 *Square Footage totals include aisles and associated entries

Buildings
New Construction

• Buildings 3-6, North of Culvert (154,800 sf, with option for phasing)
• Building 3, 2 Stories (38,700 sf)
• Building 4, 2 Stories (38,700 sf)
• Building 5, 2 Stories (38,700 sf)
• Building 6, 2 Stories (38,700 sf)
Extend entry opening to accommodate a new median.

New accessible sidewalk, 6' wide

Bench and trash receptacles at corners with space for public art

Paver bands sawcut into existing asphalt

Paver accent border

New asphalt at drive intersection

Concrete paving with heavy acid etch for rumble texture

10’ hike & bike trail on west side of street

New bus shelter to reflect the design aesthetic of TEMCO - native stone, steel, & timeless details.

Limestone block retaining wall

Oklahoma Redbud

Decorative pedestrian light at each corner

Permanent accent shrubs in seasonal color bed

Evergreen shrubs and groundcover help identify the district entrance

Standard Crepe Myrtle 10’ ht., upright form

Seasonal color

Enhanced signal light with stone base

Temple College entry monument

4”-6” cal. Live Oak

Possumhaw

S. FIRST ST.

E. MARVIN R. FELDER DR.

W. MARVIN R. FELDER DR.

Conceptual TC Entry

TEMPLE COLLEGE
Acknowledgement

The Temple College Master Planning effort has provided SHW Group Architect and Engineers the opportunity to expand their perspective with respect to campus planning theory. We are grateful for this chance to work with Temple College and its local partners as we investigated and provided solutions for the unique and challenging growth faced by the campus. Every project is different and provides those involved with the occasion for personal and professional growth. This planning effort has done just that. We hope that our work serves the College well in the near future and beyond, and as always we trust that this is the beginning of a long term relationship between SHW Group and Temple College.

TEAM
SHW Group - Architecture & Master Planning
Eric Miller, AIA - Project Manager
Patrick Calhoun, AIA, LEED AP - Planner
Dennis Farr, AIA - Project Director
Cristian Owens, AIA, LEED AP - Project Designer
Allison Binford - Staff Architect
Megan Wetzel - Staff Architect

Beach & Sulak - Civil
Tony Beach

Estes, McClure & Associates - MEP
Chris Hamby
Ed Cliver